Kartik Gautam

Available for hire

Engineer & Product Enthusiast

githublinkedintwitter


all blogs

Beginner's Guide to Backend Scaling: From Zero to Millions

2 min read

Beginner's Guide to Backend Scaling: From Zero to Millions

Learn how to evolve your backend architecture from serving hundreds to millions of users while maintaining performance and reliability.

Understanding Scale

Key Metrics

  • Requests per second (RPS)
  • Response time
  • Error rate
  • Resource utilization

Level 1: Basic Optimization

Database Indexing

-- Before SELECT * FROM users WHERE email = '[email protected]'; -- After CREATE INDEX idx_users_email ON users(email);

Caching

from django.core.cache import cache def get_user_data(user_id): cache_key = f'user_{user_id}' data = cache.get(cache_key) if data is None: data = User.objects.get(id=user_id) cache.set(cache_key, data, timeout=3600) return data

Level 2: Horizontal Scaling

Load Balancing

upstream backend { server backend1.example.com; server backend2.example.com; server backend3.example.com; }

Level 3: Service Architecture

Message Queues

from celery import task @task def process_heavy_task(): # Long-running process pass

Level 4: Data Partitioning

Sharding Strategy

def get_database_shard(user_id): return f"db_{user_id % TOTAL_SHARDS}"

Performance Monitoring

Key Areas

  1. Application metrics
  2. Database performance
  3. Cache hit rates
  4. Network latency

Common Pitfalls

  1. Premature optimization
  2. Over-engineering
  3. Ignoring monitoring
  4. Poor error handling

Scaling Checklist

  • Database optimization
  • Caching strategy
  • Load balancing
  • Monitoring setup
  • Error handling
  • Backup strategy

Conclusion

Start simple, measure everything, and scale based on real needs rather than hypothetical scenarios.